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Diffusion in a two-dimensional anisotropic web map by extrinsic noise applied
to the intrinsically perturbed quantity
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Diffusion by an extrinsic noise in a two-dimensional anisotropic web mapping is studied in the case where
an extrinsic noise is applied to the intrinsically perturbed~intrinsically active! physical quantity and the
intrinsic web diffusion is negligible. Contrary to the case where the extrinsic noise is applied to the other
~intrinsically passive! physical quantity to yield a highly anisotropic diffusion scaling@Gunyoung Park and C.
S. Chang, Phys. Rev. E64, 026211~2001!#, the diffusion scaling in this case is found to be isotropic.
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I. INTRODUCTION

Understanding the effect of extrinsic noise on global d
fusion is an important problem in nonlinear dynamical s
tems. In the so-called standard mapping, this problem
been relatively simple and well understood@1–3#: Below the
stochasticity threshold, the extrinsic noise generates glo
diffusion by letting the phase points ‘‘leak’’ across th
Kol’mogorov-Arnol’d-Moser~KAM ! curves in proportion to
the extrinsic noise strength@2#. Above the stochasticity
threshold, on the other hand, the extrinsic noise reduces
global diffusion by trapping the phase points in the KA
islands@3#. The amount of reduction by the extrinsic noise
the stochastic diffusion rate is the ratio of phase-space a
intrinsic to extrinsic stochasticity. This rate of reduction h
been observed to be a universal phenomenon, regardle
the mapping type@3–5#.

In the present work it will be assumed that the intrins
perturbation is much below the stochasticity thresho
hence, the diffusion is entirely from extrinsic noise. In
isotropic web mapping, which arises when a linear oscilla
is resonantly perturbed, it was shown in Ref.@4# that the
diffusion is isotropic and proportional to the extrinsic noi
strength l and square root of the intrinsic perturbatio
strengthK ~thus,D} lAK) if the extrinsic noisel is weaker
than the intrinsic perturbationK, andD} l 2 if l .K.

In an anisotropic two-dimensional web mapping, on t
other hand, it is reasonable to expect that global diffusion
extrinsic noise is anisotropic. Reference@5# indeed found out
that the global diffusion in an anisotropic web map is high
anisotropic when the intrinsic and extrinsic noises do not
on the same physical quantity. In this case, diffusion in
extrinsically perturbed direction shows the same scaling
that in the isotropic web mapping, i.e., proportional tolAK
for l ,K and tol 2 for l .K. On the other hand, diffusion in
the intrinsically perturbed direction is different: it is propo
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tional to lK 3/2 if l ,K and proportional toK2 ~independent of
l ) if l .K.

In the present work, we study an anisotropic web map
the case where the extrinsic noise and intrinsic perturba
exist on the same physical quantity@6#. The present numeri-
cal simulation finds that the diffusion becomes isotropic
this case, regardless of the extrinsic noise strength.

The paper is organized as follows. In Sec. II, an ani
tropic web map is defined with an extrinsic noise existing
the same physical variable as the intrinsic perturbation do
In Sec. III, a detailed numerical simulation of the diffusio
rates is presented, which finds that the global diffusion
isotropic. A simple analytic explanation of the surprising r
sult is also presented. Conclusion and discussion are
sented in Sec. IV.

II. A NOISY ANISOTROPIC WEB MAP

When we add a toggle factor (21)n to the so-called stan
dard mapping, we obtain an area-preserving anisotropic
mapping@5#

Pn115Pn1K sinwn ,

wn115wn1~21!nPn11

for two variablesPn and wn with the intrinsic perturbation
parameterK. We callP the intrinsically active quantity andw
the passive quantity.

Owing to the ‘‘toggle’’ factor in the second equation, w
call it toggle mapping. When the toggle factor is replaced
unity the standard mapping is restored. Figure 1 shows
phase-space structure of this mapping for evenn numbers.
Odd n numbers form a similar phase-space structure a
different w location. The phase space is divided into in
nitely periodic, two-dimensional, anisotropic tiles. Th
boundary between the tiles form a connected web struc
~separatrix network!. Within a tile, the phase points rotat
along the closed KAM curves. Properties of the intrinsic g
©2004 The American Physical Society02-1
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bal web diffusion in the toggle mapping for large enoughK
is not much different from those of the usual isotropic w
mapping@5#.

Reference@5# studied the extrinsic noise effect on th
mapping when the extrinsic noise explicitly scatters the p
sive quantityw:

Pn115Pn1K sinwn ,

wn115wn1~21!nPn111 l j, ~1!

wherel j is the extrinsic noise,l is the noise strength, andj
is taken to be a normal distribution of random numbers w
variance51 and mean50. As summarized in the precedin
section, Ref.@5# found out that the global diffusion is highl
anisotropic. This finding presented no surprise since
mapping itself is highly anisotropic.

The extrinsic noise can also enter in the active~P! direc-
tion in a real physical situation@6#. In this case the noisy
toggle mapping can be represented by

Pn115Pn1K sinwn1 l j,

wn115wn1~21!nPn11 . ~2!

In the present study we use the numerical technique of R
@5# to evaluate diffusion coefficients from Eq.~2!.

III. DIFFUSION COEFFICIENTS

The discrete mapping, Eq.~2!, is studied numerically. In
order to measure the diffusion coefficient, a single orbit
broken intoN segments, each of which hasT mapping steps.
Thus, the total length of the whole orbit isNT. Numerical
diffusion coefficient forP ~or w) is then given by

DP5
1

N (
i 51

N
1

2T
~Pi2Pi 21!2. ~3!

Here,T must be sufficiently large to ensure that the transi
behavior dies out, andN must be large enough to provid
meaningful statistics. As demonstrated in the Ref.@5# we find

FIG. 1. Phase-space structure of Eq.~2! for l 50 in the limit
K→0, where connected separatrix network is given by cow
1cos(w1P)50. P andw are in radians.
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that T51000 andN523106 are proper. The dimension o
DP ~or Dw) is @radian2/mapping step#.

Figures 2 and 3 show numerically evaluated diffusion c
efficientDP in terms of the extrinsic noise strengthl and the
internal perturbation strengthK, respectively. Figures 4 and
show numerical diffusion coefficientDw in terms of the ex-
trinsic noise strengthl and the internal perturbation streng
K. DP andDw show identical behavior~isotropic! except for
the factor-of-2 difference (DP52Dw). The factor-of-2 dif-
ference does not have a physical significance since the v
ables can be uniformly rescaled to remove it. Furthermo
the diffusion exhibits the same scaling law as in the isotro
web map@4#, which is D} lAK for small l !K1/2 andD} l 2

for large l @K1/2.
This result is remarkably different from the case whe

the extrinsic noise is in the passive (w) direction. In that case
the diffusion is highly anisotropic@5#: DP; lK 3/2 and Dw

; lK 1/2 at low l; andDP}K2 andDw} l 2 at highl. By simply

FIG. 2. Dp(radian2/mapping step) vs the dimensionless noi
strengthl. Solid lines representDp50.34p lAK and dotted line rep-
resentsDp5 l 2/2.

FIG. 3. Dp(radian2/mapping step) vs the dimensionless intrins
perturbation strengthK. Solid lines representDp50.34p lAK and
dotted lines representDp5 l 2/2.
2-2
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moving the extrinsic noise to the intrinsically active~P! di-
rection, the extrinsic-noise driven diffusion of the anisotrop
web map becomes basically the same as that of the isotr
map.

We find that this interesting behavior can be easily und
stood by a simple transformation of the mapping equation~2!
into the two-step mapping equation

Pn125Pn1K sinwn1K sin~wn1Pn1K sinwn

1 l j1!1 l j11 l j2 ,

wn125wn2K sin~wn1K sinwn1Pn1 l j1!2 l j2 . ~4!

The one-step mapping equation~2! produces two separat
phase plots at two differentw locations, one correspondin
to evenn and the other to oddn. By taking a two-step dif-
ference in Eq.~4!, we have isolated the phase plot corr
sponding to evenn numbers, as shown in Fig. 1 forl 50.

FIG. 4. Dw(radian2/mapping step) vs the dimensionless no
strengthl. Solid lines representDp50.17p lAK and the dotted line
representsDw5 l 2/4.

FIG. 5. Dw(radian2/mapping step) vs the dimensionless intrins
perturbation strengthK. Solid lines representDp50.17p lAK and
dotted lines representDw5 l 2/4.
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The K dependent terms produce KAM rotations and sepa
trix structure of Fig. 1 and thel dependent terms induce th
tile-to-tile diffusion.

Notice here that the extrinsic noise, which was origina
introduced in the activeP direction in Eq.~2!, propagated
into the passivew-direction in Eq.~4!. Under the presen
assumption of smallK, the l terms within theK-proportional
terms play negligible contribution compared to the stand
one l terms. Sincej1 and j2 are two independent random
numbers,l (j11j2) in Pn122Pn and l j2 in wn122wn play
the same physical roles. Only the magnitudes are differ
~by A2).

This behavior of the extrinsic noise is in contrast with t
case studied in Ref.@5# where the extrinsic noise originally
entered in the passivew direction. The two-step mapping
equation in that case becomes, from Eq.~1!,

Pn125Pn1K sinwn1K sin~wn1Pn1K sinwn1 l j1!,

wn125wn2K sin~wn1Pn1K sinwn1 l j1!1 l ~j11j2!.
~5!

The lowest-order extrinsic noise is confined tow only, in
sharp contrast to Eq.~4!. Hence, Eq.~4! is basically isotropic
with respect to the extrinsic noise, while Eq.~5! is inherently
anisotropic.

In the direction of extrinsic noise (w), Ref. @5# showed
that the diffusion obeys noisy scaling:D} lAK for small l
!K1/2 and D} l 2 for large l @K1/2. In the present case, th
extrinsic noise is active in both directions. Thus, the diff
sion follows the noisy scaling in both directions, yielding a
isotropic diffusion scaling.

IV. CONCLUSION AND DISCUSSION

We have shown that an extrinsically driven diffusion fro
a two-dimensional anisotropic web mapping can be differ
depending upon how the extrinsic noise enters into the s
tem. If the extrinsic noise is applied to the passive quant
the noise does not propagate into the active quantity.
diffusion is then highly anisotropic. However, if the extrins
noise is applied to the intrinsically active quantity, the no
propagates into the passive quantity. Diffusion in this ca
becomes isotropic, following a noisy scaling of Ref.@4#.

In other words, an extrinsic noise in the passive direct
makes only a small contribution to the diffusion in the intri
sically active direction. However, an extrinsic noise in t
active direction drives a large diffusion in the passive dire
tion. The diffusion coefficients are summarized and co
pared in Table I.

TABLE I. Comparison between the extrinsic-noise-driven diff
sion coefficients. The intrinsic perturbation is onP.

Extrinsic noise onw Extrinsic noise onP

l @K l !K l @K l !K

Dp K2/4 0.08p lK 3/2 l 2/2 0.34p lAK
Dw l 2/2 0.20p lAK l 2/4 0.17p lAK
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